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MTI NOISE INTEGRATION LOSS

INTRODUCTION

MTI signal processing correlates the receiver noise and thus results in degraded detec-
tion performance when the MTI pulses are integrated. Previous investigators [1,2] have
described the decreased performance in terms of a reduction in the effective number of
independent pulses integrated. However, since the effective number of pulses N, can be
represented by

_ (o2/m2);,

T e )
(02 /m2 )out

where o and m are the standard deviation and mean of the input samples, N, has a precise
meaning (in terms of detection performance) only if the output noise distribution is com-
pletely specified by N,. For instance, when the number of pulses integrated (N) is large,
the integrated output is approximately Gaussian distributed and integration improvement
varies as the square root of the number of pulses integrated. Thus the loss (due to the
MTI correlating the receiver noise) in signal-to-noise ratio (S/N) for a large number of
integrated pulses is

L = 10 log (N/N,)'/2.

In this report the MTI integration loss is calculated when the number of integrated
pulses is small and thus the output is not Gaussian distributed. This calculation is per-
formed using simulation techniques. First, the appropriate thresholds for a given probabil-
ity of false alarm Py, are calculated using importance-sampling techniques. Next, proba-
bility of detection Pp, curves are generated by simulation of the pulse-by-pulse video.
Finally, the MTI integration loss is found by comparing the generated P, curves with those
for independent samples [3].

FALSE-ALARM THRESHOLDS

Although Monte-Carlo simulations have been used for many years to calculate Pp,
curves, they have not been used to calculate Pfa curves because of the enormous number
of repetitions usually required: approximately 10/Py,. However this difficulty can be
overcome by using importance sampling [4]. The fundamental principle of the importance-
sampling technique is to modify the probabilities that govern the outcome of the basic
experiment of the simulation in such a way that the event of interest (the false alarm)
occurs more frequently. This distortion is then compensated for by weighting each event
by the ratio of the probability that this specific event would have occurred if the true
probabilities had been used in the simulation to the probability that this same event would
oceur with the distorted probabilities. Consequently by proper choice of the distorted
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probabilities the number of repetitions can be reduced greatly. For instance, the mean
of a function Q(x) is given by

E{Qw)) = f Q(x) dP(x),

where P(x) is the distribution of x. The mean of Q(x) can be estimated by selecting M
independent samples x; from P(x) and associating the probability 1/M with each event.

Then E{Q(x)} can be estimated by
M
z Q). @
i=1

The importance-sampling technique uses the Radon-Nikodyn derivative to express the
mean value of Q(x) by

X~

P(x
plew) - [ ew D d6e),

where G(x) is a distribution function. The mean E {Q(x)} can be estimated by selecting
M independent samples from G(x) and associating the probability dP(x;)/MdG(x;) with each
event Q(x;). Thus E {Q(x)} is estimated by

dP(x;) .
MZQ 'dG(X) =
i=1

Since (1) and (2) are both unbiased estimates of @(x), it is possible to select G(x) so that
the variance of (2) is less than the variance of (1).

In our problem of determining the threshold for a given Py, when MTI samples are
noncoherently integrated, it is necessary to estimate the distribution curve

P(Zj <T)=1- Pfa’ (3)
where
N
- 2 z;, )
i=1
in which
Zy = [+ vPyea] > )
2
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where, for a two-pulse MTI,
Xjj = Xy = X1, j (6)
and
Yij = ¥ij = Yien,j (M
with x;; and y;; being independent Gaussian variables with zero mean and a variance of
o and P(k) being the noise power out of a k-pulse MTI: P(2) = 2, P(3) = 6, P(4) = 20,
and P(5) = 70. The straightforward way of estimating (7) is to generate Gaussian samples
by
x;; = 0(-2 In uy)''? sin 2mv;; (8)
and
s 1/2
Yij = 0(-2 In u;)™'" cos 27rv,-j, 9)
with u;; and v;; being independent random numbers uniformly distributed on the interval

(0,1). To estimate (3), M independent sums {Zj,j = l,M} are formed using (4) through
(7), and the estimated distribution is

M
s |
P(Z>T)=1-w—26j,
j=1

where

=0, Z;<0.
. Importance sampling differs from the previous procedure by generating samples
using
x; = (-2 In u;)!/? sin 27 (10)
and

1/2

yij = (=2 In uy)"'" cos 2mu;, W)

where a > 0, a device which yields more false alarms. Using (10) and (11) and (4) through
(7), M sums Zj are generated. Then the estimated distribution is

M
. 1
PZ>T) TZ 5;P;,

J =1
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where
5, =i 1, Zl = T,
- 0, Zj <0,
and
W L et + et
2102
el
=gk pyory) e-(xj; + vjj)2a

With use of a= 2.0 and M = 20,000 for N = 4, « = 1.7 and M = 10,000 for N = 8,
a=1.5and M = 10,000 for N = 16, and « = 1.3 and M = 2500 for N = 32, threshold curves
were generated for two-, three-, four-, and five-pulse (binary weighting) MTIs and are shown
in Fig. 1. The reference curve for independent samples was generated using detection curves
in Robertson [3].

PROBABILITY OF DETECTION

Since the S/N out of the MTI is a function of the target doppler, the doppler
frequency where the input and output S/N are equal will be used. The S/N gain (or
loss) provided by the k-pulse MTI is :

k 2 k 2
z a; cos i, | + Z a; sin igy, 12)
i=1 i=1 :
k
S
i=1
where {a;, i = 1, ... , k) are the MTI coefficients and ¢ is the change in target phase

between successive PRFs. Setting (12) equal to 1 and solving for ¢, yields the solutions
¢y = 90°, 93 = 103°, ¢4 = 110.9°, and ¢5 = 116.5°.

Thus the Pp for a k-pulse MTI and a given Py, can be found by generating sample
video using

x;i = 0(-2 1n u,-j)”2 sin 2mv;; + A sin ig, 13)
and

yij = 0(-2 1n u;)1/2 cos 2mv;; + A cos iy,
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Fig. 1 — Threshold curves for N pulses integrated
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where S/N(dB) = 10 log (A2/202). By use of (13) and (14) and (3) through (7),
M = 1024 Zj values were generated for each S/N and compared to the appropriate
threshold. The Pj, curves for P;, = 1076 are shown in Fig. 2.

The difference between the P, curves for the various MTIs and the curve for inde-
pendent pulses is the MTI noise integration loss. This loss is given in Table 1 for the
Pp and Pp, values indicated. The loss appears to be fairly independent of both N, the
number of pulses integrated, and Pp,.
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Fig. 2 — Probability of detection curves for N pulses integrated with P,a =106
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Table 1 — MTI Noise Integration Loss for P = 0.9
and N Noncoherent Pulses Integrated

Loss (dB) Average
Ph:ﬁz (Ies Difference
N=4 |[N=8 |[N=16 | N =32 (dB)
Pfa = 10—6
Two 1.1 1.1 1.1 0.9 1.0
Three 1.8 1.9 1.7 1.7 1.8
Four 2.2 2.4 2.1 21 2.2
Five 2.5 2.7 2.3 2.4 2.5
Pfa = 10—4
Two 1.1 0.9 0.9 0.8 0.9
Three 1.8 17 1.6 1.5 1.6
Four 2.1 2.1 1.9 1.9 2.0
Five 2.3 2.5 2.1 2.2 2.3

COMPARISON WITH PREVIOUS RESULTS

The number of effective pulses integrated for a k-pulse MTI is given [1] by
N2

N ’
N +2 2 (N - HR2(j)
J=1

where Ry () is the correlation coefficient

N,(k) =

Bixi xivj}
R
£ (J) 0]
Thus, to find the MTI noise integration loss, the difference must be found between the
required S/N for N, and N independent pulses. To accomplish this, a curve of S/N versus
N for P = 0.9 and Py, = 10-6 was generated using the detection curves in Robertson

[3] and is shown in Fig. 3. From this curve the MTI noise integration loss was calculated

and is shown in Table 2. These losses are about 0.2 dB higher than the corresponding losses
in Table 1.

PR e o I R e
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Fig. 3 — S/N for P, = 0.9 and Py, = 106 as i
a function of the number of independent pulses

| integrated
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Table 2 — MTI Noise Integration Loss Using the
Effective Number of Pulses N, Integrated
for Pp = 0.9 and Py, =106

MTI Loss (dB) {\verage
Difference
Pulses (dB)
N=4 |N=8 | N=16 | N =32

Two 1.1 1.2 189 11 11

Three 1.8 1.7 1.9 1.8 1.8

Four 2.4 2.6 2.4 2.3 2.4

Five 2l 2.9 2.9 2.7 2.8 -

SUMMARY

MTTI signal processing correlates the receiver noise, and this results in an MTI noise
integration loss. The losses for two-, three-, four-, and five-pulse MTIs are approximately
1.0, 1.8, 2.2, and 2.5 dB respectively. The Pp, for a given target can be found using the
4 following procedure:

1. Calculate the input S/N (to the MTI) using the radar range equation;
‘ 2. Calculate the output S/N from the MTI using (12)

3. Use Fig. 2 to determine Pp or else assume all N pulses are independent, 4
reduce S/N by the MTI noise integration loss, and find P}, from standard
detection curves such as given in Robertson [3].
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